Characterizing healthcare workers vaccine narratives on X (Twitter).

Leonardo Heyerdahl – Postdoctoral researcher, Anthropology and Ecology of Disease Emergence Unit, Global Health Department, Institut Pasteur

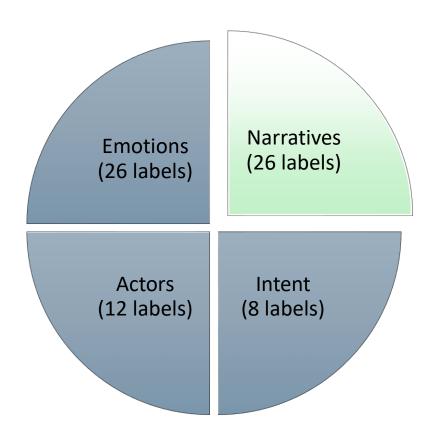
Les professionnels de santé, acteurs et sujets de la vaccination

1^{ère} Journée d'études du réseau SHS-VACCINATION

PARIS 24 JANVIER 2025

Objective

 To characterize online vaccine discourses among healthcare workers at scale using custom taxonomies.



Description of the AEE Twitter database

Daily collection of tweets (COVID, vaccination, drugs, masks, etc.)

- From February 2020 present
- Vaccination: >12 million organic tweets

Previous uses:

- Hybrid social listening
- Periodic thematic analysis
- Triangulation: interviews, questionnaires (RCCOVID, RECOVER, Transvaxx, VCF Unspoken)

Distribution of healthcare workers profiles (n= 5676 users)

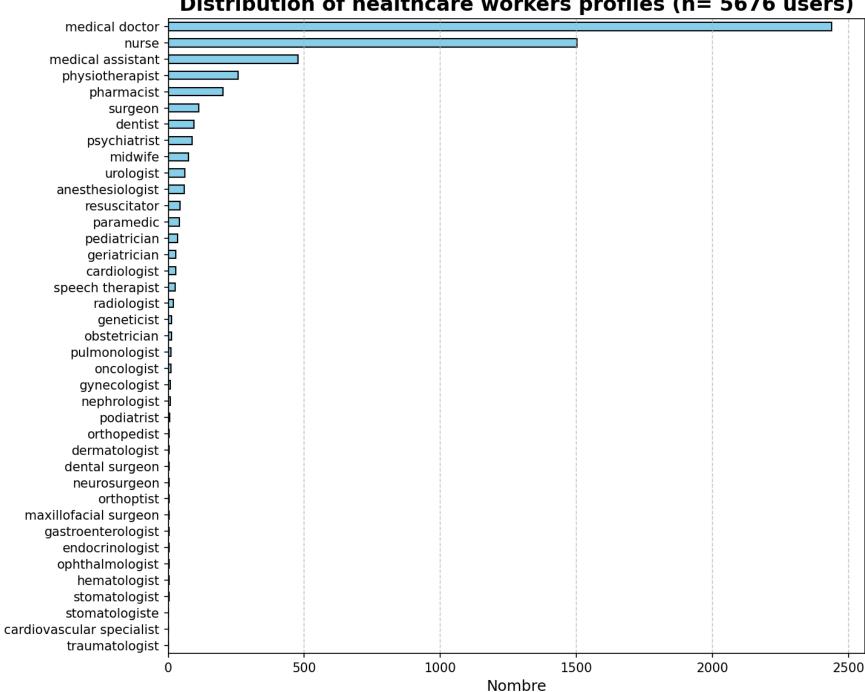
Sample discussed today:

• Healthcare profiles: filtered by Twitter bio / medical professions nomenclature

• Period: 2020–2023

Profil Soignant

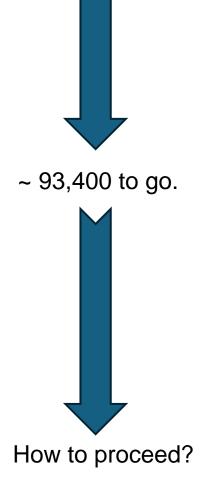
• ~ 94,000 tweets



Vaccine narratives taxonomy – ACME

Topics	labels
Safety	safe unsure_safe not_safe
Usefulness	useful unsure_useful not_useful
Accessibility	not_accessible unsure_accessible accessible waste
Pathogenic Risk	risky_pathogen unsure_risky_pathogen not_risky_pathogen
Polarization	criticizing_pro_vax criticizing_anti_vax unsanitary_other de-escalating
Actors' benevolence & competence	trust_actors unsure_trust_actors not_trust_actors
Probity	vaccine_profiteering conspiracy_ideation
Legitimacy	reactance coercion_legitimate
information	generic candid_question

Hand labeled (qualitatively coded) 600 messages.



Evolution of supervised classification options

Era	Techniques	Accuracy	Training/Inference Speed	Volume of Labeled Data Required
Classic Text Mining (2008-2013)	Bag of Words, TF-IDF (-> modelling with RF, XGBOOST using the vectors)	Moderate	Fast	Several thousand labeled texts per label
Word Embeddings (2013-2018)	Word2Vec, GloVe	Improved	Moderate	>500 Hundred to thousands of labeled texts per label
Deep Learning & Transfer Learning (>2018)	LSTM, Transformer models (e.g., BERT, CamemBERT)	Very high	Moderate	>500 Hundred to a few thousand labelled texts
>2020	?	?	?	?

Evolution of supervised classification options

Era	Techniques	Accuracy	Training/Inference Speed	Volume of Labeled Data Required
Classic Text Mining (2008-2013)	Bag of Words, TF-IDF (-> modelling with RF, XGBOOST using the vectors)	Moderate	Fast	Several thousand labeled texts per class
Word Embeddings (2013-2018)	Word2Vec, GloVe	Improved	Moderate	>500 Hundred to thousands of labeled texts per class
Deep Learning & Transfer Learning (>2018)	LSTM, Transformer models (e.g., BERT)	Very high	Moderate	>500 Hundred to a few thousand labelled texts
Large Language Models (>2020)	Few-shot, zero-shot learning (e.g., GPT-4, Gemini)	Moderate ↔ Very High	Relatively slow	Minimal (dozens to hundreds of texts), or even zero-shot

Conditions to integrating Large Language Models (LLMs)

Autonomy

- Augmenting –not replacing– analytical capacity -> deductive coding
- Ability to evaluate different models, prompting strategies
- Keeping data within research group

Closed models

Pros

- State of the art, highly efficient models
- Local compute not requiered

Cons

- Closed models
- Data & confidentiality ?

Open source models

[...]

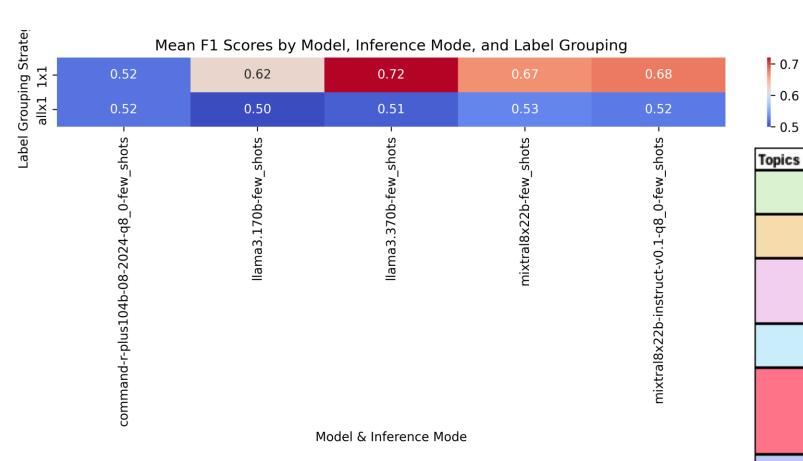
Pros

- Open source
- Run locally
- Data is not shared

Cons

- Less accurate
- Requieres local compute

LLMs Evaluation

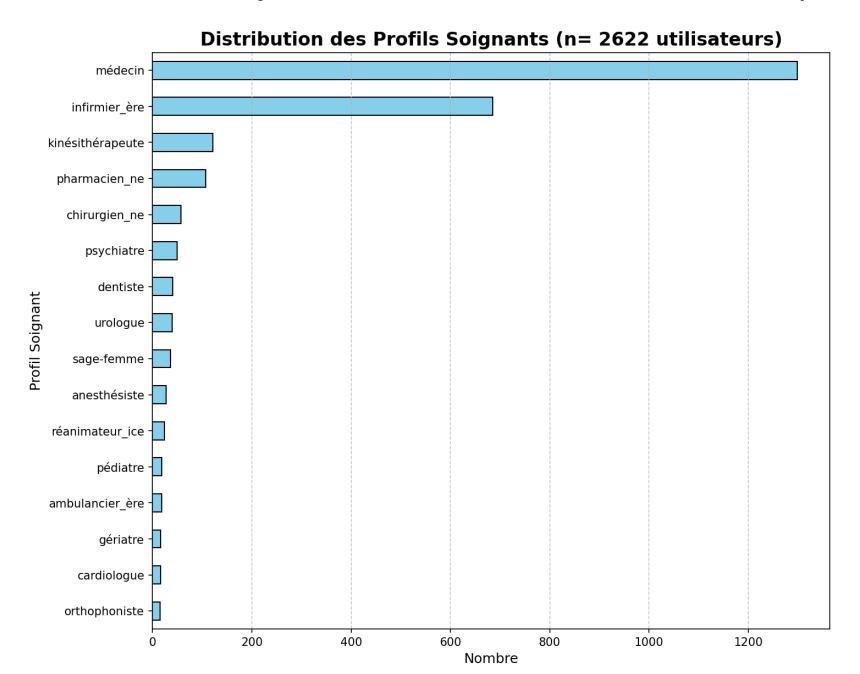


- Gains through prompt engineering:
 - Contextualizing the task
 - Disambiguating (Collaborative Qual Coding: human / machine) Ongoing

labels

Topics	tapets	
Safety	safe not_safe	
Usefulness	useful not_useful	
Accessibility	not_accessible accessible waste	
Pathogenic Risk	risky_pathogen not_risky_pathogen	
Polarization	criticizing_pro_vax criticizing_anti_vax unsanitary_other de-escalating	
Actors' benevolence & competence	trust_actors not_trust_actors	
Probity	vaccine_profiteering conspiracy_ideation	
Legitimacy	reactance coercion_legitimate	
information	generic candid_question	

Healthcare worker profiles — within the LLM labelled dataset (22,863 tweets)



MD over represented:

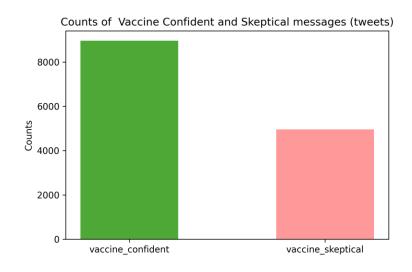
- Status / desirability?
- Specialists not detailing?

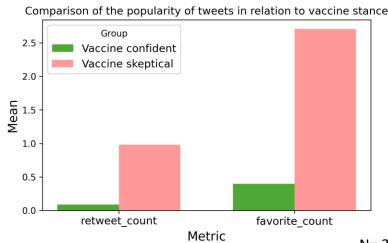
HCW Vaccine skepticism spreads faster

Overarching *vaccine_skeptical*, *vaccine_confident* variables created based on key labels (not_safe, safe..)

Overall, messages are predominantly vaccine confident (nearly x2)

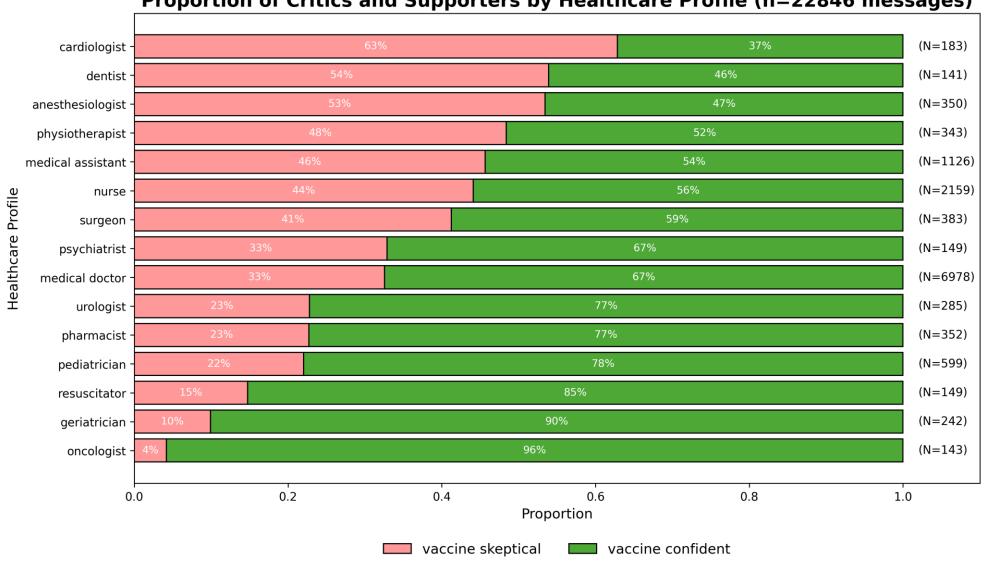
But vaccine skeptical messages are more shared (RT) and receive more favorites.



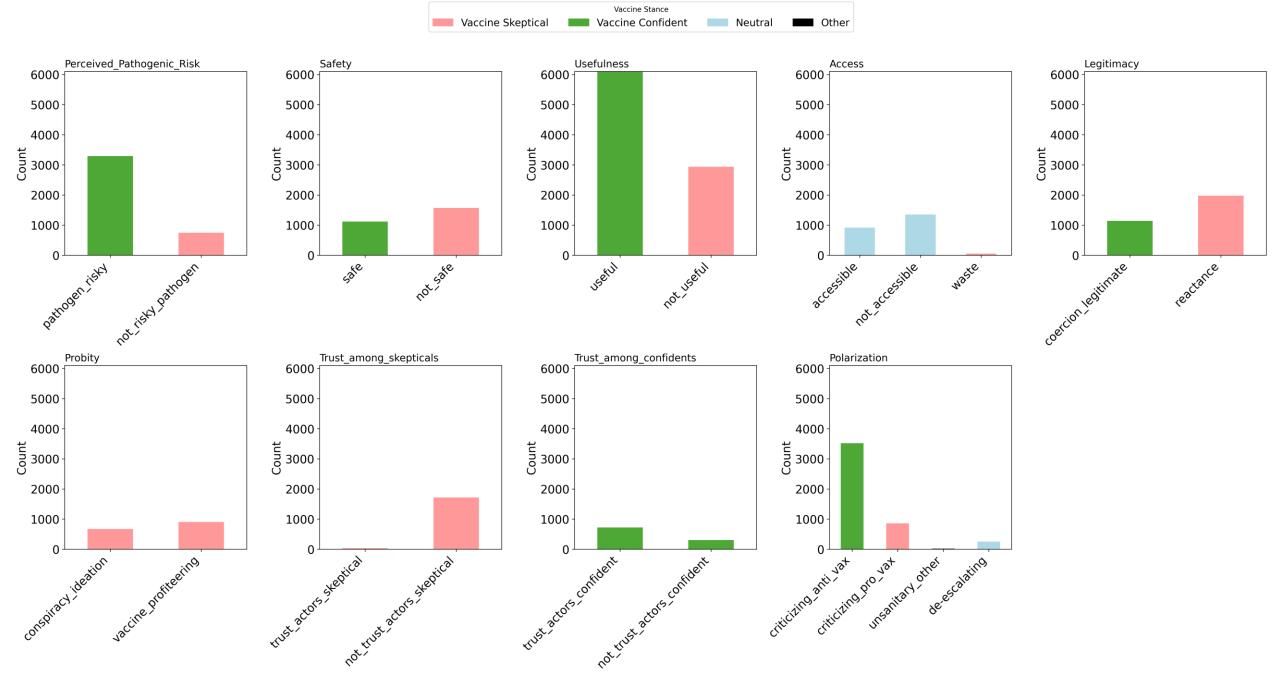


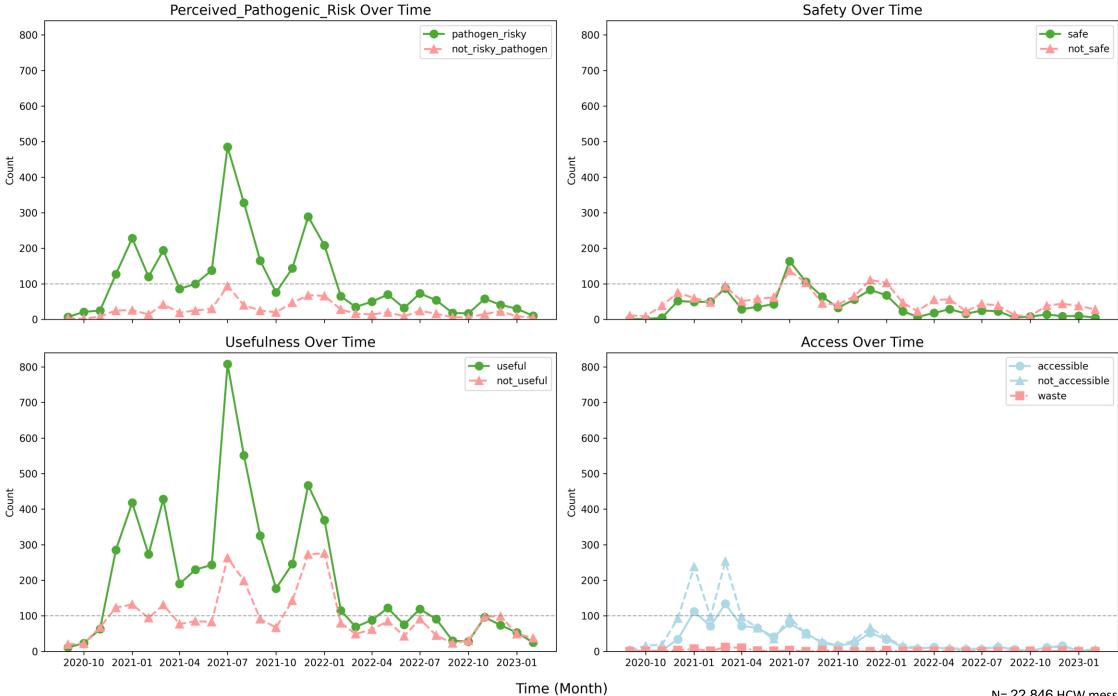
N= 21,923 HCW messages

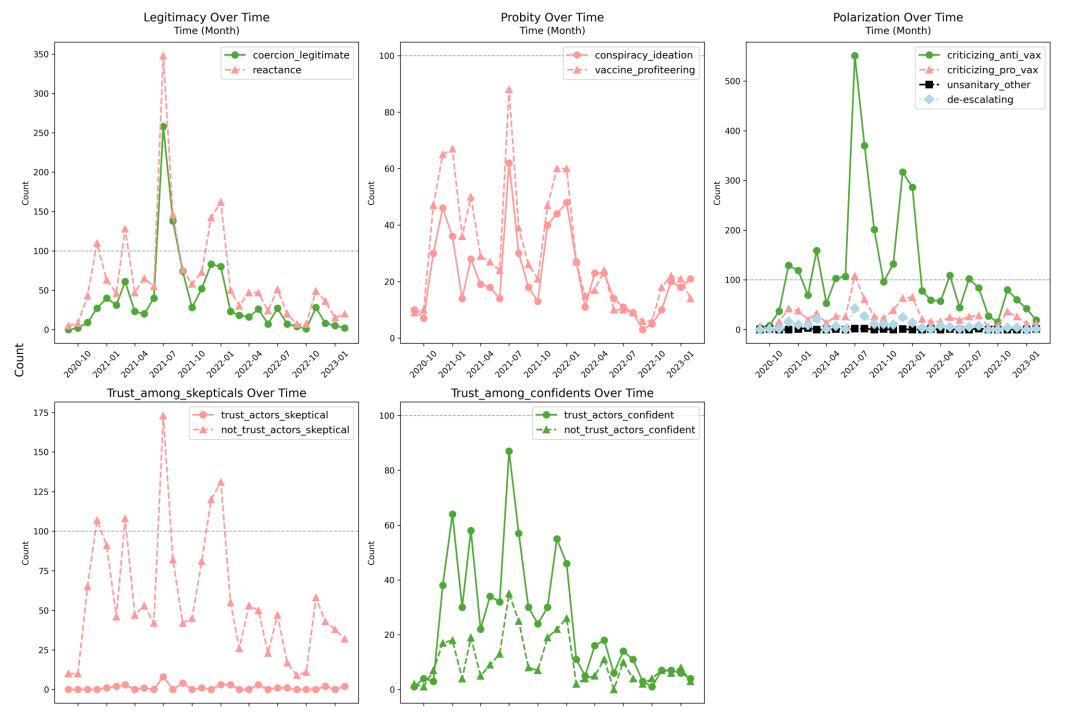
Proportion of Critics and Supporters by Healthcare Profile (n=22846 messages)



Label distributions (profile, volume, time)







Briefly

- Limitations
 - Preliminary
 - Big data is *thin* data: need to ground / triangulate
- Next steps
 - Enhance human / machine intercoder reliability (disambiguation, prompt engineering, new models).
 - Integration
 - ACME
 - DEV-SHP (ANR, > Feb 25):
 - (Unspoken) vaccine sentiments, climate of vaccine discussion w/ peers & patients.
 - co-construction of vaccine dialogue initiatives.
 - Anthropology, epidemiology, machine learning

Thank you

- ACME Hybrid Social Listening
 - Gaston Bizel-Bizellot
- ACME WP1 Factors of uptake and adherence, confidence and social equity with regard to epidemic PCMs
 - Judith Mueller
 - Pierre Verger
 - Jocelyn Raude
 - Kathy McColl
- Anthropology and Ecology of Disease Emergence, Institut Pasteur
 - Tamara Giles-Vernick